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The lowest-energy way to enclose and separate two planar regions of prescribed

areas is found, where the energy is given by the l1 norm (`Manhattan metric'), in

which horizontal and vertical directions use less energy than other directions, as

in some crystals. With the assumption that interfaces carry a fraction � of the

energy of exterior faces, it is proved that there are three possible types of

energy-minimizing double crystals. The dependence of these three types on � as

well as the ratio of the areas of the two regions is discussed, and some paths for

further study are suggested.

1. Introduction

There are situations that occur in nature in which one might

have double crystals (bicrystals) of some material with an

interface of positive energy. One such example is when a

`stacking fault' occurs (see, for example, Hammond, 1990).

Here, there is a break in the translational symmetry which is

caused by having one crystal translated by a vector that is not

a lattice translation. Stacking faults occur when translations

that break the symmetry are stable (although not global)

equilibria. Usually, these occur by symmetry reasons for

translations that are rational fractions of a lattice translation.

Another example of positive interface energy is in a

merohedral twin, such as occurs in pyrite. Pyrite crystals form

double crystals in which one crystal structure is rotated by 90�

from the other around a twofold axis. These do not resemble

our model (for pyrite, the interface is curved), although they

are a good example of when double crystals in R2 could occur.

A ®nal example of positive interface energy occurs when

there are impurities along the interface. Thus, we have three

simple situations for which our model applies: stacking faults,

merohedral twins and impurities along the interface.

For our mathematical model, we determine the shape of

energy-minimizing double crystals in the case where a single

crystal (Wulff shape) is a square or cube, as in table salt. It is

incidentally interesting to note that, as Gary Kuhnhenn

(University of Eastern Kentucky) pointed out to us, the shape

of single salt crystals might a priori be a result of cleavage

instead of crystal growth. However, this would not explain

why most grains are cubical rather than rectangular or our

observation of double crystals. A version of the question of

what energy-minimizing double crystals look like has been

answered by the SMALL '93 Geometry Group (French et al.,

1993), included in Morgan et al. (1998). Under the hypothesis

that the interface cost equals the exterior boundary cost, they

found three types of minimizing double crystals when all ratios

R of the areas B=A are explored at constant total area A� B.

See Fig. 1.

To test their ®ndings, they took some electron-microscope

photos of double salt crystals (Fig. 2). These pictures match up

with their results qualitatively and in Morgan et al. (1998) it

was suggested that a model with deeper physical reality would

assume that the interface carries a fraction � of the energy of

the exterior boundary. Physically, then, � is the ratio of the

interfacial energy per unit length 
(AB) to the surface energy

per unit length 
 � 
�A� � 
�B� of the same material (A and B)

(temperature is taken to be 0 K if not all directions are on the

2D Wulff shape).

In this paper, we consider this re®ned model. We seek the

lowest-energy way to enclose and separate two regions of

prescribed areas when the horizontal and vertical directions

are cheaper than any other direction and the interface carries

a fraction � of the energy per unit length of the faces. That is,

the energy of a face with unit normal (xi) is proportional toP jxij and the energy of an interface with unit normal (xi) is

proportional to �
P jxij, where 0 < � � 1.

We model our proof after that of Morgan et al. (1998).

Existence and regularity generalize almost immediately;

however, other proofs require new arguments. Our main

theorem, Theorem 1, provides three types of minimizing

double crystals. These minimizers are similar to the three types

found in Morgan et al. (1998), but their dimensions depend on

�. In particular, when the interior boundary carries less energy

than the exterior, the ®rst two types have longer interfaces.

The ratio R of areas at which the double crystal changes type

also depends on the size of � and, in fact, when � is small

enough, type II will not occur at all.

Figure 1
The three types of minimizing double crystals found in Morgan et al.
(1998).



1.1. Plan

We will ®rst present our main theorem (Theorem 1). Then

we will discuss the open question concerning the shape of

double crystals in R3. In particular, we will present some

dif®culties we have encountered in trying to generalize our

®ndings in R2 to R3.

1.2. References

Additional references are provided by Taylor (1978, 1992),

and Morgan (1998, ch. 10) and their bibliographies.

2. The main theorem

Theorem 1 provides the three types of double crystals and

describes under what conditions each type will occur. Lemma

1 gives an example of how the proof of the more general case

differs from the proof of the � � 1 case.

Theorem 1. Consider two areas 0 < A � B, a norm

��x1; x2� � jx1j � jx2j and a weighting factor � (0 < � � 1).

An energy-minimizing double crystal consisting of regions

with areas A and B, where the energy (per unit length) of the

boundary with unit normal n between either region and the

exterior is �(n) and the energy (per unit length) of the

boundary between the two regions is ��(n), must be a type I,

II or III, as shown in Fig. 3. Moreover, as the ratio R of areas

(B to A) increases, as in Fig. 4, when

1 � � > �0 � 1� 2� 21=2 ÿ �5� 4� 21=2�1=2 � 0:56;

the crystal will change from a type I to a type II to a type III,

and when 0 < � � �0, the crystal type goes directly from type

I to type III and type II will not occur.

Remark 1. For the three types of Fig. 3, elementary calculus

computations show that x � �2�A� B�=�2� ���1=2 and

y � �2A=��1=2. The shape ratios of width to height,

rI
A � �1� �=2�=�1� R�, rI

B � �1� �=2�=�1� 1=R� and

rII
A � �=2 all decrease as � decreases and the cheaper interface

gets longer.

Remark 2. Let R be the ratio between areas B and A.

Elementary computations show that if 1< � � �0 then, for

1 < R � R� � f8� 4�� ��8� 4��2
ÿ 16��2 ÿ 4�ÿ 12��1=2g=8;

type I is cost-minimizing and, for R � R�, type III is cost-

minimizing.

Let

� � �32� 32�2��1=2 ÿ 16�� 40�2 ÿ 8� 21=2�5=2 ÿ 12�3

� 8� 21=2�7=2 ÿ 2�4 ÿ 2� 21=2�9=2 � �5��16���ÿ 2�2�ÿ1:

If �0 < � � 1, then, for 1 < R � 2=�, type I is cost-mini-

mizing, for 2=� < R � �, type II is cost-minimizing and, for

R � �, type III is cost-minimizing. See Fig. 4.
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Figure 3
The three types of energy-minimizing double crystals for 0 < � � 1. For
the type I crystal, x � �2�A� B�=�2� ���1=2 and, for the type II crystal,
y � �2A=��1=2.

Figure 4
The cost-minimizing double crystal according to � and R � B=A. The
type indicated in each section of the graph represents the lowest-energy
double crystal.

Figure 2
Electron-microscope photographs (Morgan et al., 1998) of table salt
crystals show shapes similar to those of Fig. 1.
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Proof sketch. The proof, given completely in Wecht et al.

(1995), generalizes the proof of the special � � 1 case of

Morgan et al. (1998). First one shows for a general norm � that

a minimizer exists and consists of portions of the Wulff shape

and possibly other �-minimizing curves [Morgan et al. (1998,

section 4); Wecht et al. (1995, section 3)]. For our special

Manhattan norm, it is proved that all faces and interfaces may

be taken to be horizontal or vertical. A proof that cost is a

strictly increasing function of the area of either region of a

double crystal implies that there are no empty spaces inside

[Morgan et al. (1998, section 5); Wecht et al. (1995, section 4)],

although at this point in the argument each crystal may have

several component subregions. Certain `simple subregions' are

classi®ed into 24 types [Morgan et al. (1998, Proposition 6.4);

Wecht et al. (1995, Proposition 5.4)]. Most types are eliminated

as in Lemma 1 below. Next it is shown that each crystal

consists of just one simple subregion. These simple regions ®t

together only in the three ways of Fig. 3.

We now prove Lemma 1 as an example of the additional

complications of not assuming � � 1.

Lemma 1. A cost-minimizing double crystal has no simple

subregion of the types shown in Fig. 5.

Proof. Suppose we have one of the two types of subregions

mentioned in Lemma 1 for which the exterior boundary is the

bold line of Fig. 6. Let the length of the left wall of the

subregion be a and the length of the right wall be b. Then, if

�a < 2b, shift both the left and right walls to the right,

maintaining area. By comparing the cost of the removed walls

with the cost of the added walls, it is clear that this operation

will reduce cost. Likewise, one can verify that, when �a > 2b,

moving the walls in the opposite direction from above will

reduce cost. Finally, when �a � 2b, one can move walls

without reducing cost until either the right wall collides with

another wall, reducing cost, or the subregion changes into a

different combinatorial type. In the latter case, we have shown

that similar operations can be performed on the new type of

subregion, thus reducing cost. When the exterior boundary of

the subregion is the nonbold line in Fig. 6, similar arguments

also hold. Therefore, the original crystal was not cost-mini-

mizing.

Note that a factor of � comes into the proof, since changing

a wall from an interior to an exterior boundary alters its cost.

For the � � 1 case, plainly no such consideration was neces-

sary. Thus, in the proof of this lemma, it was necessary to make

alterations in the work that had been performed for the

simpler case.

Remark 3. One could also consider a model for two different

crystals in which the exterior of the ®rst, the exterior of the

second, and the interface between them all had different costs

a, b and c. Note that now the surface energies per unit length

are different: a � 
�A� 6� b � 
�B� 6� c � 
�AB�. Physically, this

is the most general case. At the MAA Student Workshop on

Soap Bubbles and Salt Crystals by Frank Morgan in Orlando

in January 1996, students Laura Glaessger and Mike Nimchek

computed that, for two adjacent congruent rectangles of unit

area, each should have

width2 � �a� b� c�=�2a� 2b�
and

height2 � �2a� 2b�=�a� b� c�:
More generally, if R � B=A > 1, then

height2 � �2A�a� Rb��=�a� b� c�
and (for A)

width2 � �A�a� b� c��=�2�a� Rb��:
Thus, the width/height ratio of A is �a� b� c�=�2�a� Rb��.
Notice that, again, as the interface energy c decreases, the

length of the interface (the height of the crystal) increases.

One suggestion for further research is to take this more

general case into account and ®nd a result similar to

Theorem 1.

3. The 3D conjecture

The shape of double crystals in R3 remains an open question.

Some preliminary work has been performed on this problem

by Megan Barber, Eric Boeckx, Chris Connell, Brad Lackey,

Trevis Litherland, Joe Shive, Jennifer Tice and Brian Wecht, at

the 1995 Institute for Mathematics and its Applications (IMA)

graduate conference at the University of Illinois at Urbana±

Champaign. Using elementary calculus arguments, they

proved Theorem 2, which gives the dimensions for the three-

dimensional analogs of types I, II and III planar double

crystals.

Theorem 2. Consider two volumes A and B (A � B), the norm

� � jxj � jyj � jzj (so that now three orthogonal planar

directions are cheaper than any others), and the weighting

factor � (0 < � < 2) on the area of the interfaces. Here, � is

de®ned as before: if the surface energy per unit area is


 � 
A � 
B and the interface energy per unit area is 
AB,

then � � 
AB=
. Assume that the cost-minimizing double

Figure 6
The subregion of Lemma 1 where �a < 2b, and the exterior is the bold
line.

Figure 5
Two types of simple subregions that cannot occur in a cost-minimizing
double crystal.



crystal is one of the three types of double crystal of Fig. 7. If

the crystal is type I, it consists of two connected rectangular

boxes with dimensions

x � �2�A� B�=��� 2��1=3

y � ���� 2�2B3=4�A� B�2�1=3

z � ���� 2�2A3=4�A� B�2�1=3:

If the crystal is type II, it has a rectangular box of dimensions

d � �2A=��1=3 and e � ��2A=4�1=3 on the face of a cube. If the

crystal is type III, then it consists of a cube in the corner of a

larger cube. Furthermore, as in the planar case, the value of �
and the volumes of the two regions will determine which of

these three double crystals is cost-minimizing.

Note 1. Here, as in R2, the area of the interface increases as �
decreases. For type I, the shape ratios

rI
A � �z=x� � �1� �=2�=�1� R�

and

rI
B � �y=x� � �1� �=2�=�1� 1=R�;

where R � B=A. For Type II, rII
A � e=d � �=2.

Proving that the minimizer is one of the three types in Fig. 7

appears to be quite dif®cult. First of all, we do not know, as we

do for the planar case, that every surface in the double crystal

must be either �-minimizing or a portion of the boundary of

the Wulff shape. Even for soap bubble clusters in R3, which

have a simpler norm, it is apparently not true that all surfaces

are either �-mimimizing (area-minimizing) or a portion of the

boundary of the spherical Wulff shape.

Even if we did know that every surface was �-minimizing

or a portion of a cube, we could not conclude that each

�-minimizing surface may be replaced by a ®nite number of

surfaces oriented in cheap directions, as we did for the

curves in R2. Consider a �-minimizing tilted rectangular

region bounded by four line segments, as in Fig. 8(a). We could

replace the �-minimizing surface with a series of `stairs' of

surfaces oriented in cheap directions for two opposing line

segments, but then we would violate the boundary given by

the other two line segments (Fig. 8b).
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Figure 8
We cannot replace the �-minimizing surface shaded in (a) with stairs as in
(b) since the new surface will no longer be enclosed by the same
boundary.

Figure 7
The three conjectured cost-minimizing double crystals in R3.


